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Abstract
Based on some previous results, a general formula is given for introducing
electromagnetic multipole expansions in terms of symmetric and traceless
Cartesian tensors.

PACS numbers: 03.50.De, 41.20.−q

1. Some advantages of the Cartesian forms for multipole moments in the traditional
formulation of the electromagnetic theory are well known but the procedure of obtaining
multipole tensors corresponding to irreducible representations of the three-dimensional
rotation group, especially in the dynamic case, was somehow neglected. However, the method
presented in [1] for obtaining the symmetric and traceless part of an nth-rank tensor may be
successfully used for this aim.

2. Let us consider charge ρ(r, t) and current j(r, t) distributions having supports included
in a finite domain D. Choosing the origin O of the Cartesian coordinates in D, the retarded
vector and scalar potentials at a point outside D, r = xiei , are given by the multipolar
expansions
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The electric and magnetic moments are defined by

P(n)(t) =
∫
D

ξnρ(ξ, t) d3ξ : Pi1···in =
∫
D

ξi1 · · · ξinρ(ξ, t) d3ξ

M(n)(t) = n

n + 1

∫
D

ξn × j(ξ, t) d3ξ : Mi1···in = n

n + 1

∫
D

ξi1 · · · ξin−1(ξ × j)ind3ξ.

(2)

It is shown in [2] that we can introduce such transformations of the multipole tensors

P(n) −→ P̃
(n)

, M(n) −→ M̃
(n)

, (3)

where P̃
(n)

, M̃
(n)

are fully symmetric and traceless tensors so that, if Ã and �̃ are obtained
from equations (1) by the substitutions (3), the correspondence (A,�) −→ (Ã, �̃) is a gauge
transformation.

The present letter is an attempt to systematize some results of the author and co-workers
in this field, resumming them in a compact formula.

3. We present the results from [2] by a method initiated in [3]1. In the transformations
(3), the operations of obtaining the symmetric and traceless part of some tensors are implied.
Let an nth-rank tensor L(n) of magnetic type, i.e., symmetric in the first n − 1 indices and
verifying the property Li1···ik−1jik+1···in−1j = 0, k = 1, . . . , n − 1. Then, the symmetric part of
this tensor is given by

L(sym)i1···in = 1

n

[
Li1···in + Lini2···i1 + · · · + Li1···inin−1

] = Li1···in − 1

n

n−1∑
λ=1

εiλinqN
(λ)
i1···in−1q

[L(n)]

where N ···(λ)
··· is the component with the index iλ suppressed.

The operator N defines a correspondence between L(n) and an (n − 1)th-rank tensor:

L(n) −→ N [L(n)] : [N [L(n)]]i1···in−1 ≡ Ni1···in−1 [L(n)] = εin−1psLi1···in−2ps (4)

which is fully symmetric in the first n−2 indices and the contractions of the last index with the
preceding indices give null results. So, the tensor N [L(n)] is of the type M(n−1). Particularly,

N 2k[M(n)] = (−1)kn

n + 1

∫
D

ξ 2kξn−2k × j d3ξ,

N 2k+1[M(n)] = (−1)kn

n + 1

∫
D

ξ 2kξn−2k−1 × (ξ × j) d3ξ, k = 0, 1, 2 . . . .

(5)

Consider a fully symmetric tensor S(n) and the detracer operator T introduced in [1]. This
operator acts on a totally symmetric tensor S(n) so that T [S(n)] is a fully symmetric and
traceless tensor of rank n. The detracer theorem states that [1]2

[T [S(n)]]i1···in =
[n/2]∑
m=0

(−1)m(2n − 1 − 2m)!!

(2n − 1)!!

∑
D(i)

δi1i2 · · · δi2m−1i2m
S(n:m)

i2m+1···in (6)

where [n/2] denotes the integer part of [n/2], the sum over D(i) is the sum over all permutations
of the indices i1 · · · in which give distinct terms and S(n:m)

i2m+1···in denotes the components of the
(n − 2m)th-order tensor obtained from S(n) by contracting m pairs of symbols i. Because the
number of terms in the sum over D(i) is n!/2mm!(n − 2m)!, we have∑

D(i)

δi1i2 · · · δi2m−1i2m
S(n:m)

i2m+1···in = 1

2mm!(n − 2m)!

∑
(P)

δi1i2 · · · δi2m−1i2m
S(n:m)

i2m+1···in

where the last sum is extended to all the permutations of the i-indices.

1 In [3] the demonstrations are given using the charge and current density expansions.
2 In this equation, the definition of the symmetric and traceless part of the tensor S(n) differs from that used in [1] by
a factor 1/(2n − 1)!!.
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It is useful to introduce here another operator Λ by the equation

[T [S(n)]]i1···in = Si1···in −
∑
D(i)

δi1i2 [Λ[S(n)]]i3···in (7)

where Λ[S(n)] define a fully symmetric tensor of rank n − 2. From this definition together
with the theorem (6), we obtain

	i1···in−2 [S(n)] =
[n/2−1]∑

m=0

(−1)m[2n − 1 − 2(m + 1)]!!

(m + 1)(2n − 1)!!

∑
D(i)

δi1i2 · · · δi2m−1i2m
S(n:m+1)

i2m+1···in−2
. (8)

In the following, for simplifying the notation, any argument of the operator Λ is considered
as a symmetrized tensor, i.e., 	[T(n)] = 	

[
T(n)

sym

]
for any tensor T(n). The same observation

applies to the operator T : T [T(n)] = T
[
T(n)

sym

]
.

The following four transformation properties of the multipole tensors and potentials may
be used for establishing the results from [2].

I. Let the transformation of the nth-order magnetic tensor be

M(n) → M(n)

(L) : M(L)i1···in = Mi1···in − 1

n

n−1∑
λ=1

εiλinqN
(λ)
i1···in−1q

[L(n)(t0)]. (9)

Let us substitute in the expansion of the potential A the tensor M(n) by M(n)

(L) obtaining

A
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] = A − µ0
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4π
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r
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. (10)

Here, the relations εijkεiλkq = δiqδjiλ − δiiλδjq and [� − (1/c2)∂2/∂t2][f (t0)/r] = 0, r �= 0
are considered. The function 
 is a solution of the homogeneous wave equation for r �= 0
and the corresponding expression is irrelevant. Make the transformation

P(n−1) → P′(n−1) = P(n−1) + a1(n)Ṅ [L(n)], a1(n) = −n − 1

c2n2
. (11)

Introducing the transformed potentials produced by the substitution P(n−1) → P′(n−1), we
obtain

A
[
M(n) → M(n)

(L), P(n−1) → P′(n−1)
] = A + ∇
, �[P(n−1) → P′(n−1)] = � − ∂


∂t
.

So, the transformation (9) produces changes in the potentials which, up to a gauge
transformation, are compensated by the transformation (11).

II. Let the transformation of the nth-order electric tensor be

P(n) → P(n)

(L) : P(L)i1···in = Pi1···in − 1
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The change of the vector potential is compensated by the transformation

M(n−1) −→ M(n−1) + a2(n)Ṅ [L(n)], a2(n) = n − 1

n2
= −c2a1(n). (13)

III. Let the transformation of the magnetic vector of rank n be

M(n) −→ M(n)

(S) : M(S)i1···in = Mi1···in −
∑
D(i)

δi1i2	i3···in[S(n)(t0)] (14)

where S(n) is a fully symmetric tensor.
The change in the vectorial potential produced by this transformation is

A
[
M(n) → M(n)

(S)

] = A − µ0

4π

(−1)n−1(n − 2)(n − 1)

2c2n!
∇ × [∇n−3 · Λ̈[S(n)]].

This alteration of the vectorial potential is eliminated by the transformation

M(n−2) −→ M(n−2) + b(n)Λ̈[S(n)], b(n) = n − 2

2c2n
. (15)

IV. The transformation

P(n) −→ P(S) : P(S)i1···in = Pi1···in −
∑
D(i)

δi1i2	i3···in[S(n)] (16)

produces the following changes of the potentials:

A
[
P(n) → P(n)

(S)

] = A − µ0

4π

(−1)n−1

n!
ei∂i1 · · · ∂in−1

1

r

∑
D(i)

δi1i2	̇i3···in[S(n)]


= A + ∇
 ′ − µ0

4π

(−1)n−1(n − 2)(n − 1)

2n!c2
∇n−3 ·

[
1

r

...

Λ[S(n)]

]
with 
 ′, as 
, satisfying the homogeneous wave equation and

�
[
P(n) → P(n)

(S)

] = � +
µ0

4π

(−1)n−1n(n − 1)

2n!
∇n−2 ·

[
1

r
Λ̈[S(n)]

]
.

Take the transformation

P(n−2) −→ P′′(n−2) = P(n−2) + b(n)Λ̈[S(t0)] (17)

with b(n) given by equation (15). The effect of the transformation (17) on the potential A is
the compensation of the extra-gauge term. So A

[
P(n) → P(n)

(S), P(n−2) → P′′(n−2)
] = A + ∇
 ′

but it is easy to see that the modification of the scalar potential � produced by the
transformation (17) together with the modification due to the transformation (16) gives
�

[
P(n) → P(n)[S(n)], P(n−2) → P′′(n−2)

] = � − ∂
 ′/∂t the total effect of the transformations
(16) and (17) being a gauge transformation of the potentials.

4. Let the gauge-invariant process of reducing the multipole tensors begin for the electric
tensors from the order n = ε and for the magnetic ones from n = µ. Generally, we may
choose ε > µ as seen, for example, from the calculation of the total power radiated by a
confined system of charges and currents [3]. The following formulae are results of the rules
represented by equations (11), (13), (15) and (17):

P̃
(n) = P(n) + T

{
[(ε−n)/2]∑

k=1

A
(n)
k

d2k

dt2k
	k[P(n+2k)]

+
[(µ−n−1)/2]∑

k=0

d2k+1

dt2k+1

k∑
l=0

B
(n)
kl ΛlN 2k−2l+1[M(n+1+2k)]

}
, (18)
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M̃
(n) = M(n) + T

{
[(µ−n)/2]∑

k=1

d2k

dt2k

k∑
l=0

C
(n)
kl ΛlN 2k−2l[M(n+2k)]

}
(19)

where

A
(n)
k =

k∏
l=1

b(n + 2l),

B
(n)
kl =

l∏
q=1

b(n + 2q)

k−l∏
h=0

a1(n + 1 + 2k − 2h)

k−l−1∏
s=0

a2(n + 2k − 2s)

(20)

and

C
(n)
kl =

l∏
q=1

b(n + 2q)

k−l−1∏
h=0

a1(n + 2k − 2h)

k−l−1∏
s=0

a2(n − 1 + 2k − 2s). (21)

By P(n) and M(n) we understand the ‘static’ expressions of the reduced multipole tensors:

P(n)(t) = T [P(n)] = (−1)n

(2n − 1)!!

∫
D

ρ(r, t)r2n+1∇n 1

r
d3x,

M(n)(t) = T [M(n)] = (−1)n

(n + 1)(2n − 1)!!

∑n

λ=1

∫
D

r2n+1[j(r, t) × ∇]iλ∂
(λ)
i1···in

1

r
d3x.

In these formulae one considers
∏L

k=l Fk = 1 if L < l. For justifying the formulae (18),
(19), we may consider separately the reduction of the tensors P(n) beginning from n = ε.
Using equation (17), we obtain

P(ε−2p) → P̃
′(ε−2p) = P(ε−2p) + T

[
p∑

k=1

A
(ε−2p)

k

d2k

dt2k
Λk[P(ε−2p+2k)]

]
,

p = 0, 1, 2, . . . . (22)

Repeating the operations but beginning from n = ε − 1, we obtain the full set of reduced
electric tensors for µ = 0. The process of reduction is a little more complicated for the
magnetic tensors because of the operation of symmetrization. Beginning with n = µ and
applying equations (11), (13), we obtain the following results for the symmetrized tensors:

M(µ−2p) → M(µ−2p)
sym +

{
p∑

k=1

C
(µ−2p)

k0

d2k

dt2k
N 2k[M(µ−2p+2k)]

}
sym

, (23)

P̃
′(µ−2p−1) → P̃

′(µ−2p−1)
+

{
p∑

k=0

B
(µ−2p−1)

k0

d2k+1

dt2k+1
N 2k+1[M(µ−2p+2k)]

}
sym

. (24)

By applying equations (15) and (17) to these results, we obtain equations (18) and (19).
Equations (18) and (19) show that it is possible to give compact formulae for the

electromagnetic multipolar expansions using the general tensorial formalism and all is reduced
to simple algebraic calculations which may be performed also by automatic numerical or
symbolic computation [4].

The gauge-invariant reduction procedure described by the points 1–3 and formulae (18)
and (19) present the advantage of simplicity and it is done in a systematic way which will be
pointed out in the following.
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(a) By counting the contributions of the linear dimensions of the domain D, the tensors M(n)

and Ṗ
(n+1)

are comparable [3]. Consequently, in equations (18) and (19) the case ε = µ + 1
is to be considered. In this case, there is a new way to group terms in equation (18),

P̃
(n) = P(n) +

[(ε−n)/2]∑
k=1

(−1)k

c2k

d2k−1

dt2k−1
T(n)

(k),

T(n)

(k) = (−1)kc2k

[
A

(n)
k 	k[Ṗ

(n+2k)
] +

k−1∑
l=0

B
(k)
k−1,l	

lN 2k−2l−1[M(n+2k−1)]

]
,

(25)

where besides the usual electric and magnetic multipole moments one displays a third
multipole family, the toroid moments and, generally, mean-square radii of various orders.

These results may be compared with those obtained using a different formalism in
[5, 6]. As a simple example, T(1)

(1) and T(1)

(2) may be compared with, respectively, the toroid

dipole moment t and the first mean-square radius �̄R2 of the toroid dipole distribution from
[6].

As is known, this third family of multipoles is related to problems of violations of
spacetime symmetries in elementary particle, atomic, nuclear and molecular physics.
Theoretical and experimental results related to the content of equations (19) and (25)
are presented in a large number of publications, most of them being cited in the above-
mentioned reviews.

(b) Using the reduced tensors P̃
(n)

and M̃
(n)

one obtains, by simple algebraic calculations
implying only elementary tensorial manipulations and some combinatorics, results for
various physical quantities such as radiation power, angular momentum loss, recoil force
or interaction energy. One can see, for example, in the case of the radiation intensity, the
total power radiated is very simply expressed in terms of these tensors, [7]:

Jµε = 1

4πε0c3

[
µ∑

n=1

n + 1

nn!(2n + 1)!!c2n

(
M̃

(n)

,n+1

∣∣∣∣M̃(n)

,n+1

)
+

ε∑
n=1

n + 1

nn!(2n + 1)!!c2n−2

(̃
P

(n)

,n+1

∣∣∣∣̃P(n)

,n+1

)]
where f,k denotes the time derivative of the order k of f . A similar simple structure
characterizes the expressions of the angular momentum loss and recoil forces. The
corresponding results will be presented in a future publication. Some issues related to such
results are analysed in [3]. For example, by treating an elementary system manifesting
itself as a toroid electric dipole, it suffices to calculate separately the corresponding
contribution to a physical quantity. On the other hand, if the contribution for a composite
system—an atom, a nucleus, etc—is considered, then all the multipolar terms contributing
with the same order of magnitude must be calculated together with toroid dipole moment.
So, for example, in the treatment of the ‘magnetic dipole and electric quadrupole’
radiation in the well-known textbooks by Landau and Lifschitz [8] and Jackson [9]
the corresponding results are correct for the problem stated there and correspond to the
first from the above circumstances, contrary to the criticism formulated in [6]. It seems
that in the literature the problem of consistently imposing the criteria according to which
different terms of the multipole expansion must be considered in a given approximation is
treated in different ways producing contradictory results. So, in [10] a consistent method
of approximation is used, but only a part of the toroid dipole is obtained, whereas in [5, 6]
the exact contribution of this toroid dipole is obtained but either terms corresponding to
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the same approximation are neglected, or an incomplete number of terms corresponding
to a higher approximation are present.

The main goal of this letter is not to obtain new physical results but to offer a method to
treat some complicated physical problems in a systematic, self-consistent way, making use of
simple mathematical methods.
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